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Introduction

In this talk, we concern with the uniform asymptotics of the

Meixner-Pollaczek (MP) polynomials as the degree n tends to infinity.

The Meixner-Pollaczek polynomials were first discovered by Meixner

(1934) and later studied by Pollaczek (1950). The major properties

were discussed by Chihara (1978), Koekoek and Swarttouw (1998).

Certainly, we can find the MP polynomials in DLMF.
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Introduction

The Meixner-Pollaczek polynomials P
(λ)
n (x;φ) with parameters λ > 0

and φ ∈ (0, π) can be defined by the hypergeometric functions

P (λ)
n (x;φ) =

(2λ)n

n!
einφ

2F1

(−n, λ+ ix

2λ
; 1− e−2iφ

)
.

They are orthogonal on the real line with respect to the weight

function

w(x;λ, φ) = |Γ(λ+ ix)|2 exp{(π − 2φ)x},

and we have the orthogonality∫ +∞

−∞
P (λ)

m (x;φ)P (λ)
n (x;φ)w(x;λ, φ)dx =

Γ(n+ 2λ)
(2 sinφ)2λn!

δmn.
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Introduction

The asymptotic analysis of the MP polynomials P
(λ)
n (x;φ) as n→∞.

Y.Chen and M.Ismail (1997) investigated the asymptotic behaviors of

the extreme zeros of the MP polynomials, and also the asymptotic

distribution of zeros in symmetric case.

X.Li and R.Wong (2001) obtained an asymptotic expansion of the

MP polynomials in terms of the parabolic cylinder functions which is

valid uniformly in the interval [−nM,nM ] for a given M > 0. They

also obtained the improved asymptotic behaviors of the zeros.

I.V.Krasovsky (2003) also investigated the asymptotic distribution of

zeros of MP polynomials on the approach of the semiclassical WKB

analysis of difference equations.
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Introduction

The aim of our work is to derive asymptotic expansions of the MP

polynomials P
(λ)
n (z;φ) in the complex plane with varying large

parameter λ, say λ = λn ∼ nA for some constant A > 0.

The uniform asymptotics of orthogonal polynomials with varying

weights was investigated by many authors, e.g. P.Deift and his

collaborators for varying exponential weights. Many of these works

focused on the weights with a varying large parameters, in particular,

on the Laguerre polynomials Lαn
n and Jacobi polynomials P

(αn,βn)
n .
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Introduction

Here are some references.

C.Bosbach and W.Gawronski (1998), A.B.J.Kuijlaars and

K.McLaughlin (2001), A.Aptekarev and R.Khabibullin (2007) et.al.

for the Laguerre polynomials;

C.Bosback and W.Gawronski (1999), A.B.J.Kuijlaars and

A.Martinez-Finkelshtein (2004), A.Martinez-Finkelshtein and R.Orive

(2005), R.Wong and W.J.Zhang (2006) et.al. for the Jacobi

polynomials.

V.S.Buyarov, J.S.Dehesa, A.Martinez-Finkelshtein and E.B.Saff

(1999) discussed the asymptotics of information entropy both for

Jacobi and Laguerre polynomials.
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Introduction

Our uniform asymptotic expansions are for P
(τA)
n (τz, φ) with

τ = n+ 1
2 . The result is given as follows.

In a bounded region (a “rectangle” containing the support of the

equilibrium measure), the expansion involves the parabolic cylinder

functions;

In an unbounded region (outside of the “rectangle”), the expansion

involves the elementary functions. These two regions are overlapped

and the union of them covers the whole plane.

Our method is the Riemann-Hilbert approach developed by P.Deift

and X.Zhou. This powerful method has been already successfully

applied in the asymptotic analysis for many orthogonal polynomials.
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Fundamental Riemann-Hilbert problem

Let πn(z) be the monic polynomials of the MP polynomials. Let

Y : C \ R → C2×2 be the 2× 2 matrix-valued function

Y (z) =

(
πn(z) C[πnw](z)

cnπn−1(z) cnC[πn−1w](z)

)
,

where cn = −2πi(2 sinφ)2(n+λ−1)/[(n− 1)!Γ(n+ 2λ− 1)], and

C[f ](z) :=
1

2πi

∫ +∞

−∞

f(x)
x− z

dx, z ∈ C \ R,

is the Cauchy transform of f .
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Fundamental Riemann-Hilbert problem

From the well-known result of Fokas, Its and Kitaev, Y (z) satisfies
the following Riemann-Hilbert problem (RHP):

(Ya) Y (z) is analytic in C \ R;

(Yb) for x ∈ R,

Y+(x) = Y−(x)

(
1 w(x;λ, φ)
0 1

)
;

(Yc) for z ∈ C \ R and z →∞,

Y (z) =
(
I +O

(1
z

))(zn 0
0 z−n

)
.
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Fundamental Riemann-Hilbert problem

Now we set λ = λn = τA where τ = n+ 1
2 and A > 0, and make a

rescale transform

U(z) =

(
τ−n 0
0 τn

)
Y (τz).

Then U(z) satisfies a RHP similar to Y (z) but with the jump matrix(
1 wn(x)
0 1

)
,

where wn(x) is the weight function with varying parameter λ = τA,

that is,

wn(x) = w(τx; τA, φ).
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Fundamental Riemann-Hilbert problem

The weight function wn(x) has an analytic continuation

wn(z) = Γ(τA+ iτz)Γ(τA− iτz) exp{(π − 2φ)τz}

which has singularities at z = ±(k/τ +A)i, (k = 0, 1, 2, . . .).

The difficult in our arguments is that wn(z) is quite complicate which

involves the Gamma functions.
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Equilibrium measures

The equilibrium measure µn(x)dx related to the weight function

wn(x) is supported on the interval [αn, βn], where the constants αn,

βn are known as the Mhaskar-Rakhmanov-Saff numbers (MRS

numbers).

Let

G(z) :=
1
πi

∫ βn

αn

µn(s)
s− z

ds, z ∈ C \ [αn, βn]

be the Cauchy transform of µn(x).

Then

G+(x) +G−(x) = − i

πτ

d

dx
logwn(x), x ∈ (αn, βn).
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Equilibrium measures

Let

h(z) = − d

dz
logwn(z) = i[ψ(τA− iτz)− ψ(τA+ iτz)]− (π − 2φ),

where ψ(z) = d log Γ(z)/dx = Γ′(z)/Γ(z).

From the Plemelj formula, we get that

G(z) =

√
(z − αn)(z − βn)

2πτ2i

∫ βn

αn

h(s)√
(s− αn)(s− βn)

1
s− z

ds.

Then, the equilibrium measure µn(x) is given by

µn(x) = ReG+(x), x ∈ [αn, βn].
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Equilibrium measures

The MRS numbers αn, βn can be determined by∫ βn

αn

i[ψ(τA− iτs)− ψ(τA+ iτs)]− (π − 2φ)√
(s− αn)(s− βn)

ds = 0,∫ βn

αn

i[ψ(τA− iτS)− ψ(τA+ iτs)]− (π − 2φ)√
(s− αn)(s− βn)

sds = 2τπ.

The asymptotic expansions of αn, βn as n→∞ can be obtained by

the use of the asymptotic formula of ψ(z)

ψ(z) ∼ log z − 1
2z
−

∞∑
k=1

B2k

2k
z−2k,

for |z| → ∞ in | arg z| < π, where Bn are the Bernoulli numbers.
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Equilibrium measures

The result expansions of αn, βn are given by

αn ∼
∞∑

j=0

aj

nj
, βn ∼

∞∑
j=0

bj
nj
,

where the first coefficients are

a0 =
(A+ 1) cotφ−

√
2A+ 1

sinφ
,

b0 =
(A+ 1) cotφ+

√
2A+ 1

sinφ
,

and aj , bj can be determined iteratively.
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Equilibrium measures

Let σ(z) =
√

(z − αn)(z − βn), z ∈ C \ [αn, βn], σ(z) ∼ z, z →∞,

C(x) := (x− αn)
√
β2

n +A2 − (x− βn)
√
α2

n +A2, and

D(x) := 2
√

(βn − x)(x− αn) Im
√

(−iA− βn)(iA− αn)].

From µn(x) = ReG+(x), we can get for x ∈ [αn, βn],

µn(x) =
1
2π

log
C(x) +D(x)
C(x)−D(x)

+

√
(x− αn)(βn − x)

4πτ
Fn(x),

where

Fn(x) ∼ 1
(x+ iA)σ(−iA)

+
1

(x− iA)σ(iA)
+

∞∑
k=1

(−1)kB2k

kτ2k−1
ωk(x),

ωk(x) =
1

(2k − 1)!

[ i

(s− x)σ(s)

](2k−1)∣∣∣−iA

iA
.
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Equilibrium measures

For the symmetric case αn = −βn (i.e. φ = π/2), the asymptotic

behavior of µn(x) reduces to

µn(x) ∼ 1
2π

log

√
βn

2 +A2 +
√
βn

2 − x2√
βn

2 +A2 −
√
βn

2 − x2
,

which is very similar to that already obtained by Y. Chen and

M. Ismail in 1997.
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The mapping φn(z)

As pointed by P.Deift et.al., it is important to introduce an auxiliary
functions φn(z) related to the weight function wn(z) or µn.

Let νn(z) = πiG(z) + 1
2h(z),

z ∈ C \ ([αn, βn] ∪ {z = ±(A+ k/τ)i : k = 0, 1, 2, . . . }).

Then νn,±(x) = ±πiµn(x) for x ∈ (αn, βn).

νn(z) has asymptotics

νn(z) ∼ i

2
log

C(z) +D(z)
C(z)−D(z)

+
σ(z)
4τ

Fn(z)

uniform valid in a domain bounded away from cuts [αn, βn],
[iA,+i∞) and (−i∞,−iA], where

D(z) = −2i Im
√

(−iA− βn)(iA− αn)σ(z).
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The mapping φn(z)

The auxiliary function φn(z) is defined by

φn(z) =
∫ z

βn

νn(s)ds,

which is analytic on C \ ((−∞, βn] ∪ [iA, i∞) ∪ (−i∞,−iA]).

Symmetrically, the function φ̃n(z) is

φ̃n(z) =
∫ z

αn

νn(s)ds,

z ∈ C \ ([αn,∞) ∪ [iA, i∞) ∪ (−i∞,−iA]).
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The mapping φn(z)

Given 0 < c < 1 and M > max {|αn|, |βn|}, define the rectangle

K = K(c,M) = {z ∈ C : |Re z| < M, | Im z| < cA}, and K± the

upper and lower half of K.

The mapping properties of φn(z) on the real axis:

I If x ∈ [βn,∞), then φn(x) ∈ [0,∞), and when x moves from ∞
to βn, φn(x) moves from ∞ to 0 decreasingly.

I If x ∈ [αn, βn], then φn,+(x) ∈ [−iπ, 0], and when x moves from

βn to αn, φn,+(x) moves from 0 to −iπ monotonically.
I If x ∈ (−∞, αn], then φn,+(x) ∈ [−iπ,∞− iπ), and when x

moves from αn to −∞, φn,+(x) moves from −iπ to ∞− iπ

increasingly.
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The mapping φn(z)

There is 0 < c < 1, for any M > max{|αn|, |βn|}, φn(z) is a

one-to-one mapping from the upper-half rectangle K+ = K+(c,M)
to a region in C \ {z : Re z ≥ 0,−π ≤ Im z ≤ 0}.

0αn βn−M M

iA

cA
K+

φn 0
−πi

Symmetrically on the lower half rectangle K−.
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Asymptotics of U(z) outside of K

Now we can follow from the standard arguments of the
Riemann-Hilbert approach by a series transformations.

U → T : the normalization of U(z) at infinity by using the logarithm

potential of equilibrium measure,

T → S: the matrix decomposition and the contour deformation,

S has an approximation S∞ which satisfies a solvable RHP.

Solving this limit RHP, we can get the asymptotic behavior of U(z)
outside of a neighborhood of [αn, βn] (e.g. outside of the rectangle K).
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Asymptotics of U(z) outside of K

The result asymptotic behavior of U(z) outside of K is given by

U(z) ∼ e
1
2
τ`nσ3 Ṽout(z)wn(z)−

1
2
σ3 , z ∈ C \ (K ∪ R),

where

Ṽout(z) =
1
2

(
1 0

−i(2z−αn−βn)
βn−αn

−2i

)
bn(z)−σ3

(
1 i

−1 i

)
e−τφn(z)σ3 ,

I bn(z) = [(z − αn)(z − βn)]1/4/
√
βn − αn for z ∈ C \ (−∞, βn],

I the constants `n ∼ 2A log τ
I and σ3 is Pauli’s matrix

(
1
0

0
−1

)
.
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Asymptotics of U(z) inside in K

To obtain the asymptotic behavior of U(z) inside in K, we need to
construct a parametrix V (z) = Ṽin(z) such that

it satisfies the jump condition V+(x) = V−(x)

(
1 1
0 1

)
for x ∈ R,

and it has asymptotic behavior like Ṽout on the boundary of K

(matching condition).

The mapping properties of φn(z) invokes us to construct our
approximate solution by using the parabolic cylinder function.
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Asymptotics of U(z) inside in K

From F. Olver’s significant work on the asymptotics of the parabolic
cylinder functions U(−τ, 2

√
τξ) as τ →∞, we introduce the function

f(ξ) = ξ
√
ξ2 − 1− log(ξ +

√
ξ2 − 1), ξ ∈ C \ (−∞, 1].

This is a one-to-one mapping from upper half plane C+ to the region
C \ {z : Re z ≥ 0,−π ≤ Im z ≤ 0}.

0−1 1

f 0
−πi
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Asymptotics of U(z) inside in K

Combining f(ξ) with the mapping properties of the auxiliary function

φn(z), we establish a one-to-one mapping between ξ ↔ z defined by

f(ξ(z)) = φn(z), or equiv. ξ(z) = f−1 ◦ φn(z),

for z ∈ K.

This mapping maps the rectangle K to a neighborhood of [−1, 1],
and ξ(αn) = −1, ξ(βn) = 1.
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Asymptotics of U(z) inside in K

To construct the parametrix satisfying the jump condition, we use the
connection formula for the parabolic cylinder functions

√
2πU(a,±x)

= Γ(
1
2
− a){e−iπ( 1

2
a+ 1

4
)U(−a,±ix) + eiπ( 1

2
a+ 1

4
)U(−a,∓ix)}.

This yields the matrix equation (jump relation)(
U(−τ, 2

√
τξ) n!√

2πin
U(τ,−2i

√
τξ)

1√
τ
U ′(−τ, 2

√
(τ)ξ) n!√

2πτin+1U
′(τ,−2i

√
τξ)

)
=(

U(−τ, 2
√
τξ) − n!in√

2π
U(τ, 2i

√
τξ)

1√
τ
U ′(−τ, 2

√
(τ)ξ) −n!in+1

√
2πτ

U ′(τ, 2i
√
τξ)

)(
1 1
0 1

)
.

Qiu, Wang & Wong () Meixner-Pollaczek Polynomials Special Functions 21, NIST 27 / 35



Asymptotics of U(z) inside in K

To match the behavior of Ṽout on ∂K, we use Olver’s uniform

asymptotic approximation of the parabolic cylinder functions:

U(−τ, 2
√
τξ) ∼ 1√

2
τ

τ
2
− 1

4 e−
τ
2

1
[ξ2(z)− 1]1/4

e−τφn(z),

U(τ,−2i
√
τξ) ∼ in+1

√
2
τ−

τ
2
− 1

4 e
τ
2

1
[ξ2(z)− 1]1/4

eτφn(z),

uniformly for ξ ∈ C \ (−∞, 1] (z ∈ C \ (−∞, βn]).

U ′(−τ, 2
√
τξ) and U ′(τ,−2i

√
τξ) have the corresponding

approximations.
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Asymptotics of U(z) inside in K

Insert above asymptotic approximations into the matrix equation for

jump relation, and comparing it with Ṽout(z), we construct the

parametrix for z ∈ K+

Ṽin(z) =
1√
2
τ−

τ
2
+ 1

4 e
τ
2

(
1 0

−i(2z−αn−βn)
βn−αn

−2i

)(
(ξ2 − 1)1/4

bn(z)

)σ3

·

(
U(−τ, 2

√
τξ) n!√

2πin
U(τ,−2i

√
τξ)

1√
τ
U ′(−τ, 2

√
(τ)ξ) n!√

2πτin+1U
′(τ,−2i

√
τξ)

)
.

Similar construction of the parametrix can be given for z ∈ K−.

Qiu, Wang & Wong () Meixner-Pollaczek Polynomials Special Functions 21, NIST 29 / 35



Asymptotic expansions of U(z)

Define

Ũ(z) =

e
1
2
τ`nσ3 Ṽin(z)wn(z)−

1
2
σ3 , z ∈ K \ R,

e
1
2
τ`nσ3 Ṽout(z)wn(z)−

1
2
σ3 , z ∈ C \ (K ∪ R).

We have formally that U(z) ∼ Ũ(z).

To give a rigorous prove, and to obtain the asymptotic expansion, we

define the matrix

S(z) = e−
1
2
τ`nσ3U(z)Ũ−1(z)e

1
2
τ`nσ3 .
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Asymptotic expansions of U(z)

It is easy to verify that S(z) is the solution of the following RHP:

(Sa) S(z) is analytic in C \ Σ, where Σ = Σ0 ∪ Σ1 ∪ Σ2, Σ0 = ∂K,

Σ1 = (−∞,−M ] and Σ2 = [M,∞);

(Sb) S+(ζ) = S−(ζ)JS(ζ) for ζ ∈ Σ;

(Sc) S(z) ∼ I +O(1/z) as z ∈ C \ Σ and z →∞.

K
−M M

Σ0

Σ1 Σ2
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Asymptotic expansions of U(z)

Applying the uniform asymptotic expansions of the parabolic cylinder

functions U(−τ, 2
√
τξ), U(τ,−2i

√
τξ), etc., the jump matrix JS(ζ)

has an asymptotic expansion on the contour Σ:

JS(ζ) ∼ I +
∞∑

m=1

J
(m)
S (ζ)
(2τ)m

, ζ ∈ Σ0,

JS(x) ∼ I +O(e−cn1/4
), x ∈ Σ1 ∪ Σ2.

The coefficients J
(m)
S (ζ) can be determined by the coefficients of

expansions of the parabolic cylinder functions.

Qiu, Wang & Wong () Meixner-Pollaczek Polynomials Special Functions 21, NIST 32 / 35



Asymptotic expansions of U(z)

From the expansion of JS on Σ, we can prove that the solution S(z)
of RHP (Sa)− (Sc) also has a uniform asymptotic expansion:

S(z) ∼ I +
∞∑

m=1

S(m)(z)
(2τ)m

,

where the coefficients S(m)(z) can be determined recursively.

Then we obtain

U(z) ∼ e
1
2
τ`nσ3

[
I +

∞∑
m=1

S(m)(z)
(2τ)m

]
e−

1
2
τ`nσ3Ũ(z).

Take the (1,1)-entry, we get the uniform asymptotic expansion of

πn(τz).
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Asymptotic expansions of πn(τz)

In the rectangle K, we have the uniform asymptotic expansion

πn(τz) =
1√
2
e

τ
2
(`n+1)τ

n
2wn(z)−

1
2 [U(−τ, 2

√
τξ(z))A(z, n)

+ U ′(−τ, 2
√
τ ξ(z))B(z, n) ]

where A(z, n) and B(z, n) are analytic functions of z, and

A(z, n) ∼ (ξ2 − 1)
1
4

bn(z)

[
1 +

∞∑
k=1

Ak(z)
τk

]
,

B(z, n) ∼ bn(z)

(ξ2 − 1)
1
4

∞∑
k=1

Bk(z)

τk+ 1
2

.
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Asymptotic expansions of πn(τz)

Outside of K, we have the uniform asymptotic expansion

πn(τz) ∼ 1
2
τne

τ
2
`nbn(z)−1wn(z)−

1
2 e−τφn(z)

[
1 +

∞∑
k=1

Ck(z)
τk

]

Thank you for your attention.
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Asymptotic expansions of πn(τz)
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2
τne

τ
2
`nbn(z)−1wn(z)−

1
2 e−τφn(z)
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∞∑
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Ck(z)
τk
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